Lesson Summary

Definition: For a positive number r, a dilation with center O and scale factor r is the transformation of the plane that maps O to itself, and maps each remaining point P of the plane to its image P' on the ray \overrightarrow{OP} so that $|OP'| = r|OP|$. That is, it is the transformation that assigns to each point P of the plane a point $\text{Dilation}(P)$ so that

1. $\text{Dilation}(O) = O$ (i.e., a dilation does not move the center of dilation).

![Diagram](Diagram1.png)

2. If $P \neq O$, then the point $\text{Dilation}(P)$ (to be denoted more simply by P') is the point on the ray \overrightarrow{OP} so that $|OP'| = r|OP|$.

In other words, a dilation is a rule that moves each point P along the ray emanating from the center O to a new point P' on that ray such that the distance $|OP'|$ is r times the distance $|OP|$.

Problem Set

1. Let there be a dilation from center O. Then, $\text{Dilation}(P) = P'$ and $\text{Dilation}(Q) = Q'$. Examine the drawing below. What can you determine about the scale factor of the dilation?
2. Let there be a dilation from center \(O \). Then, \(\text{Dilation}(P) = P' \) and \(\text{Dilation}(Q) = Q' \). Examine the drawing below. What can you determine about the scale factor of the dilation?

![Diagram of a dilation showing points P, Q, O, P', and Q']

3. Let there be a dilation from center \(O \) with a scale factor \(r = 4 \). Then, \(\text{Dilation}(P) = P' \) and \(\text{Dilation}(Q) = Q' \). \(|OP| = 3.2 \text{ cm} \), and \(|OQ| = 2.7 \text{ cm} \), as shown. Use the drawing below to answer parts (a) and (b). The drawing is not to scale.

![Diagram showing points P, Q, O, P', and Q' with distances labeled]

a. Use the definition of dilation to determine \(|OP'| \).

b. Use the definition of dilation to determine \(|OQ'| \).
4. Let there be a dilation from center O with a scale factor r. Then, $\text{Dilation}(A) = A'$, $\text{Dilation}(B) = B'$, and $\text{Dilation}(C) = C'$. $|OA| = 3$, $|OB| = 15$, $|OC| = 6$, and $|OB'| = 5$, as shown. Use the drawing below to answer parts (a)–(c).

|OA| = 3

- Using the definition of dilation with lengths OB and OB', determine the scale factor of the dilation.
- Use the definition of dilation to determine $|OA'|$.
- Use the definition of dilation to determine $|OC'|$.

a. Using the definition of dilation with lengths OB and OB', determine the scale factor of the dilation.

b. Use the definition of dilation to determine $|OA'|$.

c. Use the definition of dilation to determine $|OC'|$.

a. Using the definition of dilation with lengths OB and OB', determine the scale factor of the dilation.

b. Use the definition of dilation to determine $|OA'|$.

c. Use the definition of dilation to determine $|OC'|$.

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org