Lesson Summary

- A rotation of 180 degrees around O is the rigid motion so that if P is any point in the plane, P, O, and Rotation(P) are collinear (i.e., lie on the same line).
- Given a 180-degree rotation, \(R_0 \) around the origin O of a coordinate system, \(R_0 \), and a point P with coordinates \((a, b) \), it is generally said that \(R_0(P) \) is the point with coordinates \((-a, -b) \).

Theorem: Let O be a point not lying on a given line \(L \). Then, the 180-degree rotation around O maps \(L \) to a line parallel to \(L \).

Problem Set

Use the following diagram for Problems 1–5. Use your transparency as needed.

1. Looking only at segment \(BC \), is it possible that a 180° rotation would map segment \(BC \) onto segment \(B'C' \)? Why or why not?

2. Looking only at segment \(AB \), is it possible that a 180° rotation would map segment \(AB \) onto segment \(A'B' \)? Why or why not?
3. Looking only at segment AC, is it possible that a 180° rotation would map segment AC onto segment $A'C'$? Why or why not?

4. Connect point B to point B', point C to point C', and point A to point A'. What do you notice? What do you think that point is?

5. Would a rotation map triangle ABC onto triangle $A'B'C'$? If so, define the rotation (i.e., degree and center). If not, explain why not.

6. The picture below shows right triangles ABC and $A'B'C'$, where the right angles are at B and B'. Given that $AB = A'B' = 1$, and $BC = B'C' = 2$, and that \overline{AB} is not parallel to $\overline{A'B'}$, is there a 180° rotation that would map $\triangle ABC$ onto $\triangle A'B'C'$? Explain.