Lesson 13: Angle Sum of a Triangle

Classwork

Concept Development

\[m\angle 1 + m\angle 2 + m\angle 3 = m\angle 4 + m\angle 5 + m\angle 6 = m\angle 7 + m\angle 8 + m\angle 9 = 180^\circ \]

Note that the sum of the measures of angles 7 and 9 must equal 90° because of the known right angle in the right triangle.
Exploratory Challenge 1

Let triangle ABC be given. On the ray from B to C, take a point D so that C is between B and D. Through point C, draw a segment parallel to \overline{AB}, as shown. Extend the segments AB and CE. Line AC is the transversal that intersects the parallel lines.

![Diagram of triangle ABC with points A, B, C, D, and E, and parallel lines]

a. Name the three interior angles of triangle ABC.

b. Name the straight angle.

c. What kinds of angles are $\angle ABC$ and $\angle ECD$? What does that mean about their measures?

d. What kinds of angles are $\angle BAC$ and $\angle ECA$? What does that mean about their measures?

e. We know that $m\angle BCD = m\angle BCA + m\angle ECA + m\angle ECD = 180^\circ$. Use substitution to show that the measures of the three interior angles of the triangle have a sum of 180°.
Exploratory Challenge 2

The figure below shows parallel lines L_1 and L_2. Let m and n be transversals that intersect L_1 at points B and C, respectively, and L_2 at point F, as shown. Let A be a point on L_1 to the left of B, D be a point on L_1 to the right of C, G be a point on L_2 to the left of F, and E be a point on L_2 to the right of F.

a. Name the triangle in the figure.

b. Name a straight angle that will be useful in proving that the sum of the measures of the interior angles of the triangle is 180°.

c. Write your proof below.